Chance Constrained Mixed Integer Program: Bilinear and Linear Formulations, and Benders Decomposition
نویسندگان
چکیده
In this paper, we study chance constrained mixed integer program with consideration of recourse decisions and their incurred cost, developed on a finite discrete scenario set. Through studying a non-traditional bilinear mixed integer formulation, we derive its linear counterparts and show that they could be stronger than existing linear formulations. We also develop a variant of Jensen’s inequality that extends the one for stochastic program. To solve this challenging problem, we present a variant of Benders decomposition method in bilinear form, which actually provides an easy-to-use algorithm framework for further improvements, along with a few enhancement strategies based on structural properties or Jensen’s inequality. Computational study shows that the presented Benders decomposition method, jointly with appropriate enhancement techniques, outperforms a commercial solver by an order of magnitude on solving chance constrained program or detecting its infeasibility.
منابع مشابه
A Chance Constrained Information-Gap Decision Model for Multi-Period Microgrid Planning
This paper presents a chance constrained information gap decision model for multi-period microgrid expansion planning (MMEP) considering two categories of uncertainties, namely random and non-random uncertainties. The main task of MMEP is to determine the optimal sizing, type selection, and installation time of distributed energy resources (DER) in microgrid. In the proposed formulation, inform...
متن کاملDecomposition algorithms for two-stage chance-constrained programs
We study a class of chance-constrained two-stage stochastic optimization problems where second-stage feasible recourse decisions incur additional cost. In addition, we propose a new model, where “recovery” decisions are made for the infeasible scenarios to obtain feasible solutions to a relaxed second-stage problem. We develop decomposition algorithms with specialized optimality and feasibility...
متن کاملRESOLUTION METHOD FOR MIXED INTEGER LINEAR MULTIPLICATIVE-LINEAR BILEVEL PROBLEMS BASED ON DECOMPOSITION TECHNIQUE
In this paper, we propose an algorithm base on decomposition technique for solvingthe mixed integer linear multiplicative-linear bilevel problems. In actuality, this al-gorithm is an application of the algorithm given by G. K. Saharidis et al for casethat the rst level objective function is linear multiplicative. We use properties ofquasi-concave of bilevel programming problems and decompose th...
متن کاملAccelerating Benders decomposition for network design
Network design problems arise in many different application areas such as air freight, highway traffic and communications systems. This thesis concerns the development, analysis and testing of new techniques for solving network design problems. We study the application of Benders decomposition to solve mixed integer programming formulations of the network design problem. A new methodology for a...
متن کاملConvergence properties of generalized Benders decompositions
This paper addresses two major issues related to the convergence of generalized Benders decomposition which is an algorithm for the solution of mixed integer linear and nonlinear programming problems. First, it is proved that a mixed integer nonlinear programming formulation with zero nonlinear programming relaxation gap requires only one Benders cut in order to converge, namely the cut corresp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014